

1、概 述

SG6932 是一种LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU数字接口、数据锁存器、LED高压驱动。本产品性能优良,质量可靠。主要应用于多段位显示屏驱动。采用SOP32的封装形式。

其主要特点如下:

- 采用功率CMOS工艺
- 显示模式 (8段×16位)
- 辉度调节电路(占空比8级可调)
- 串行接口(CLK、STB、DIN)
- 振荡方式: RC振荡(450KHz±5%)
- 内置上电复位电路
- 封装形式: SOP32

2、功能框图及引脚说明

2.1、引脚排列图

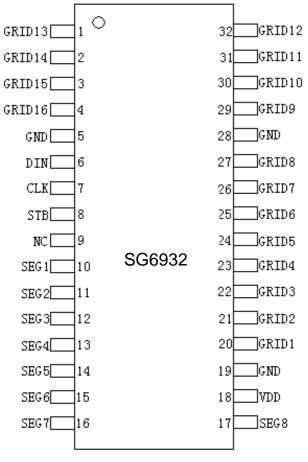


图 1、SG6932 引脚排列图

2.2、引脚说明

	1	_,	
引脚	符号	引脚名称	说明
1	GRID13	输出(位)	位输出,N管开漏输出
2	GRID14	输出(位)	位输出,N 管开漏输出
3	GRID15	输出(位)	位输出,N管开漏输出
4	GRID16	输出(位)	位输出,N管开漏输出
5	GND	逻辑地	接系统地
6	DIN	数据输入	在时钟上升沿输入串行数据,从低位开始。
7	CLK	时钟输入	在时钟上升沿输入/输出串行数据
8	STB	片选	在上升或下降沿初始化串行接口,随后等待
9	NC	空脚	内部未连线
10	SEG1	输出(段)	段输出,P管开漏输出
11	SEG2	输出(段)	段输出,P管开漏输出
12	SEG3	输出(段)	段输出,P管开漏输出
13	SEG4	输出(段)	段输出,P管开漏输出
14	SEG5	输出(段)	段输出,P管开漏输出
15	SEG6	输出(段)	段输出,P管开漏输出
16	SEG7	输出(段)	段输出,P管开漏输出
17	SEG8	输出(段)	段输出,P管开漏输出
18	VDD	逻辑电源	5V±10%
19	GND	逻辑地	接系统地
20	GRID1	输出(位)	位输出,N管开漏输出
21	GRID2	输出(位)	位输出,N管开漏输出
22	GRID3	输出(位)	位输出,N管开漏输出
23	GRID4	输出(位)	位输出,N管开漏输出
24	GRID5	输出(位)	位输出,N管开漏输出
25	GRID6	输出(位)	位输出,N管开漏输出
26	GRID7	输出(位)	位输出,N管开漏输出
27	GRID8	输出(位)	位输出,N管开漏输出
28	GND	逻辑地	接系统地
29	GRID9	输出(位)	位输出,N管开漏输出
30	GRID10	输出(位)	位输出,N管开漏输出
31	GRID11	输出(位)	位输出,N管开漏输出
32	GRID12	输出(位)	位输出,N管开漏输出
	l	1	1

3、电特性

3.1、 极限参数(除非另有规定,T_{amb}=25℃,GND=0V)

参数名称	符号	条 件	额 定 值	单 位
逻辑电源电压	$V_{ m DD}$		-0.5~7.0	V
逻辑输入电压	VI1		-0.5~VDD+0.5	V
LED Seg 驱动输出电流	I01		-50	mA
LED Grid 驱动输出电流	I02		+200	mA
功率损耗	PD		400	mW
工作温度	Topt		-40~+80	$^{\circ}$ C
储存温度	Tstg		-65∼+150	$^{\circ}$ C

3.2、推荐使用条件(T_{amb}=-20℃~+70℃,GND=0V)

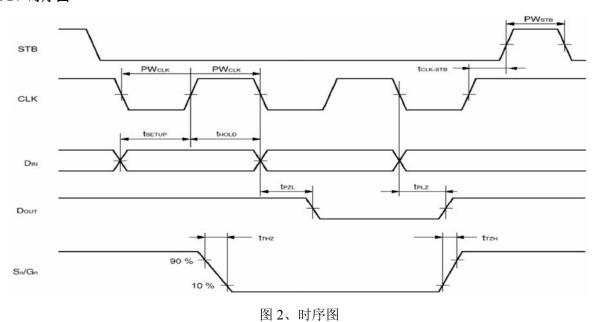
参数名称	符号	最小	典型	最大	单 位
逻辑电源电压	VDD	3	5	5.5	V
高电平输入电压	VIH	0.7VDD	-	VDD	V
低电平输入电压	VIL	0	-	0.3VDD	V

3.3、电气特性

3.3.1、电气特性(除非另有规定,T_{amb}=-20℃~+70℃,VDD=3V~3.6V,GND=0V)

参数名称	符号	测试条件	最小	典型	最大	单 位	
	I_{OH1}	Seg1∼seg8,	-20	-25	-40	mA	
 高电平输出电流	10H1	Vo=VDD-2V	20			1112 \$	
1,4 2 1 1114 21 2010	I_{OH2}	Seg1∼seg8,	-20	-30	-50	mA	
	10H2	Vo=VDD-3V	20		20	1111 1	
 低电平输出电流	I_{OL1}	Grid1∼grid16	80	140	_	mA	
	*OL1	Vo=0.3V	00	110		III/A	
低电平输出电流	I_{DOUT}	Vo=0.4V,DOUT	4	1	-	mA	
高电平输出电流	I _{TOLSG}	Vo=VDD-3V,	_		5	%	
容许量	TIOLSG	Seg1∼seg8	_	_	3	/0	
输出下拉电阻	$R_{\rm L}$		-	10	-	ΚΩ	
输入电流	I_{I}	VI=VDD/GND	-	ı	±1	μΑ	
高电平输入电压	V_{IH}	CLK,DIN,STB	0.7VDD	1	-	V	
低电平输入电压	V_{IL}	CLK,DIN,STB	-	-	0.3VDD	V	
滞后电压	V_{H}	CLK,DIN,STB	-	0.35	-	V	
动态电流损耗	I_{DD} dyn	无负载,显示关	-	-	5	mA	

3.3.2、开关特性 (除非另有规定,T_{amb}=-20℃~+70℃,VDD=4.5V~5.5V)


参数名称	符号	测试条件	最小	典型	最大	单 位
振荡频率	f_{OSC}	R=16.5K	-	500	-	KHz
传输延迟时间	t_{PLZ}	CLK→DOUT	-	1	300	ns
技術是及時間	t_{PZL}	CLK=15pF,RL=10K Ω			100	ns
上升时间	T _{TZH1}	CL=300pF,Seg1~Seg8	-	i	2	μs
/ H 1 P 1	T_{TZH2}	CL=300pF,Grid1~Grid16	1	ı	0.5	μs
下降时间	T_{THZ}	CL=300pF,Segn,Gridn	1	i	120	μs
最大时钟频率	Fmax	占空比 50%	1	i	-	MHz
输入电容	C_{I}	-	-	-	15	pF

3.3.3、时序特性 (除非另有规定,T_{amb}=-20℃~+70℃,VDD=4.5V~5.5V)

参数名称	符号	测试条件	最小	典型	最大	单 位
时钟脉冲宽度	PWCLK	-	400	-	-	μs
选通脉冲宽度	PESTB	-	1	-	-	μs
数据建立时间	t _{SETUP}	-	100	-	-	ns
数据保持时间	t_{HOLD}	-	100	-	-	ns
CLK→STB 时间	t_{CLKSTB}	CLK ↑ →STB ↑	1	-	-	μs
等待时间	t_{WAIT}	CLK ↑ → CLK ↓	1	-	-	μs

4、功能介绍

4.1、时序图

4.2、显示寄存器地址和显示模式

该寄存器存储通过串行接口从外部器件传送到 SG6932 的数据,地址从 00H-0FH 共 16 字节单元,分别与芯片 SEG 和 GRID 管脚所接的 LED 灯对应,分配如下图:

写 LED 显示数据的时候,按照从显示地址的低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	
Х	XHL(1	低四位))	Х	XHU(ī	高四位])	
В0	B1	B2	В3	B4	B5	В6	В7	
	00H	I L			00F	łU		GRID1
	01F	I L			01F	łU		GRID2
	02H	I L			02F	łU		GRID3
	03H	I L			03F	HU		GRID4
	04H	I L			04F	GRID5		
	05H	I L			05F	GRID6		
	06F	I L			06F	GRID7		
	07H	I L			07F	GRID8		
	08F	I L			08F	GRID9		
	09H	I L			09I	GRID10		
	0AI	HL			0AI	HU		GRID11
	0BI	HL			0BI	HU		GRID12
	0CI	HL			0CI	GRID13		
	0DI	HL			0DI	GRID14		
	0EI	HL .			0EF	GRID15		
	0FI	ΉL			0FF	łU		GRID16

图 3、寄存器地址

4.3、指令介绍

指令用来设置显示模式和 LED 驱动器的状态。

当 STB 下降沿后由 DIN 输入的第一个字节作为一条指令。经过译码,取最高 B7、B6 两位比特位以区别不同的指令。

В7	В6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时 STB 被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)。

(1) 数据命令设置

该指令用来设置数据写和读, B1 和 B0 位不允许设置 01 或 11

MSB LSB

В7	B6	В5	B4	В3	B2	B1	В0	功能	说明
0	1	无关项				0	0	数据读写模式 设置	写数据到显示寄存器
0	1	填	0		0			地址增加模式	自动地只增加
0	1				1			设置	固定地址
0	1			0				测试模式设置	普通模式
0	1			1				(内部使用)	测试模式

(2) 地址命令设置

MSB LSB

В7	B6	B5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03H
1	1			0	1	0	0	04H
1	1			0	1	0	1	05H
1	1			0	1	1	0	06H
1	1	7.1	L +75	0	1	1	1	07H
1	1	无关		1	0	0	0	08H
1	1	填	0	1	0	0	1	09Н
1	1			1	0	1	0	0AH
1	1			1	0	1	1	0ВН
1	1			1	1	0	0	0СН
1	1			1	1	0	1	0DH
1	1			1	1	1	0	0ЕН
1	1			1	1	1	1	0FH

该指令用来设置显示寄存器的地址。

如果地址设为 10H 或更高,数据被忽略,直到有效地址被设定。上电时,地址默认设为 00H。

(3) 显示控制:

MSB LSB

В7	B6	B5	B4	В3	B2	B1	В0	功能	说明
1	0				0	0	0		设置脉冲宽度 1/16
1	0				0	0	1		设置脉冲宽度 2/16
1	0	无关项			0	1	0	消光数量设置	设置脉冲宽度 4/16
1	0				0	1	1		设置脉冲宽度 10/16
1	0	填 0			1	0	0		设置脉冲宽度 11/16
1	0				1	0	1		设置脉冲宽度 12/16
1	0				1	1	0		设置脉冲宽度 13/16
1	0				1	1	1		设置脉冲宽度 14/16
1	0			0				显示开关设置	显示关
1	0			1					显示开

4.4、串行数据传输格式:

数据接收(写数据)

接收1个BIT都在时钟的上升沿操作

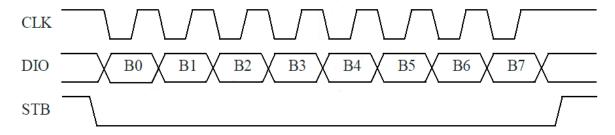


图 4、串行数据接收时序图

▲注意: 读取数据时,从串行时钟 CLK 的第 8 个上升沿开始设置指令到 CLK 下降沿读数据之间需要一个等待时间 Tmait (最小 1us)

4.5、显示:

(1) 驱动共阴数码管:

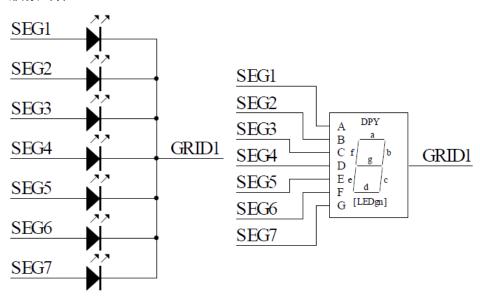


图 5、共阴数码管连接图

上图为共阴数码管的连接示意图,如果让该数码管显示"0",那么在 GRID1 为低电平的时候 SEG1,SEG2,SEG3,SEG4,SEG5,SEG6 为高电平,SEG7 为低电平,查看"显示寄存器地址和显示模式"给出的显示地址表格,只需在 00H 地址单元里面写数据 3FH 就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	00H
B7	B6	B5	B4	В3	B2	B1	В0	

(2) 驱动共阳数码管:

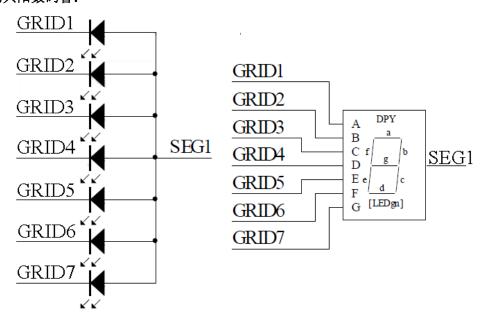


图 6、共阳数码管连接图

2013/09/10 Page 8 of 14 Version: 1.0

上图给出了共阳数码的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2,GRID3,GRID4,GRID5,GRID6 为低电平的时候让SEG1 为高电平,在GRID7 为低电平的时候让SEG1 为低电平。要向地址单元00H-05H 里面写入数据01H,其余的地址单元全部写00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SGE2	SEG1	
0	0	0	0	0	0	0	1	00H
0	0	0	0	0	0	0	1	01H
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	03H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	05H
0	0	0	0	0	0	0	0	06H
В7	В6	В5	B4	В3	B2	B1	В0	

▲注意: SEG1-8 为 P 管开漏输出, GRID1-16 为 N 管开漏输出, 在使用时候, SEG 只能接 LED 的阳极, GRID 只能接 LED 的阴极, 不可反接。

4.6、应用时串行数据的传输

4.6.1、地址增加模式

使用地址自动加 1 模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕,"STB"不需要置高紧跟着传数据,最多 16BYTE,数据传送完毕才将"STB"置高。

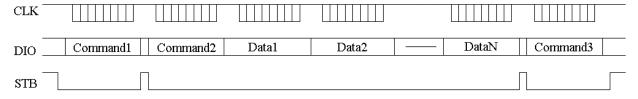


图 7、地址加 1 时序图

Command1:设置数据命令Command2:设置显示地址

Data1~N: 传输显示数据至 Command2 地址和后面的地址内(最多 16 bytes)

Command3:显示控制命令

4.6.2、固定地址模式

使用固定地址模式,设置地址实际上是设置需要传输的 1BYTE 数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传 1BYTE 数据,数据传送完毕后才将"STB"置高。然后重新设置第 2 个数据需要存放的地址,最多 16BYTE 数据传送完毕,"STB"置高。

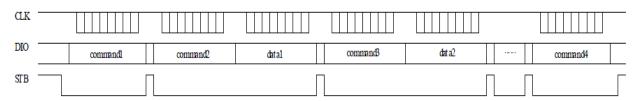


图 8、固定地址时序图

Command1:设置数据命令 Command2:设置显示地址1

Data1: 传输显示数据 1 至 Command2 地址内

Command3:显示显示地址2

Data2: 传输显示数据 2 至 Command3 地址内

Command4:显示控制命令

4.6.3、程序设计流程图

采用地址自动加1的程序设计流程图:

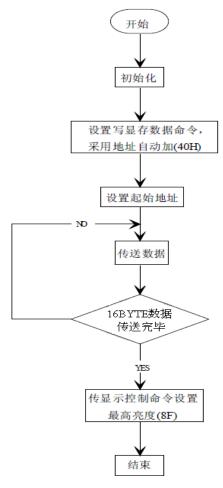


图 9、地址增加程序流程图

采用固定地址的程序设计流程图:

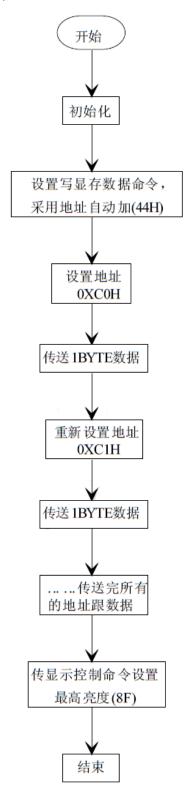


图 10、固定地址程序流程图

5、典型应用线路

5.1、SG6932 驱动共阴数码管电路原理图

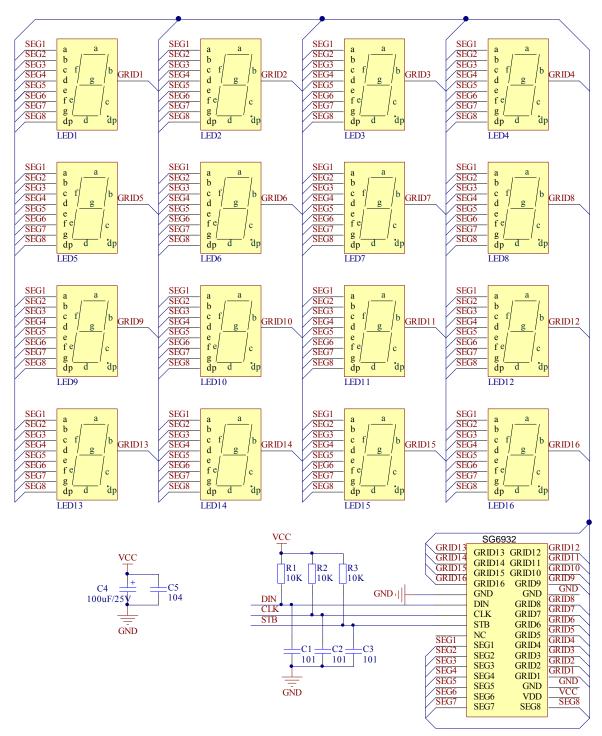
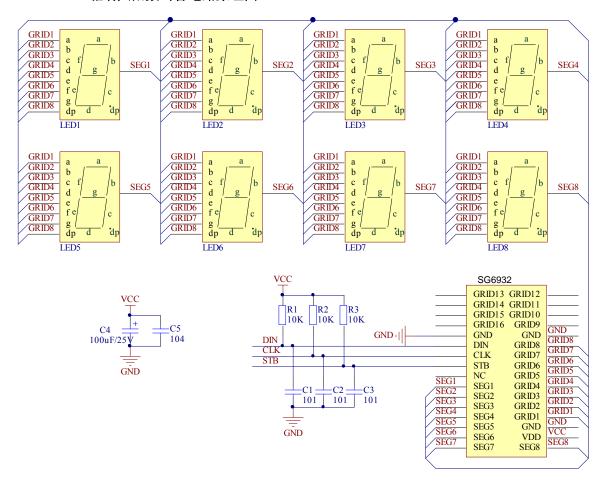
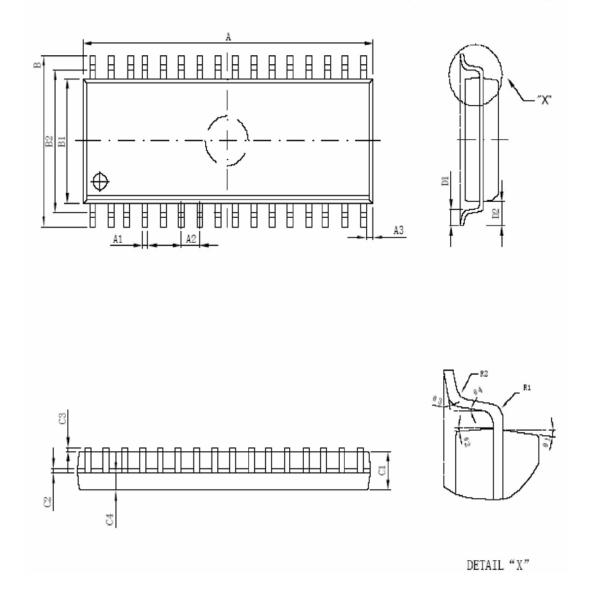


图 11、SG6932 驱动共阴数码管原理图

5.2、SG6932 驱动共阳数码管电路原理图




图 12、SG6932 驱动共阳数码管原理图

6、封装尺寸与外形图

6.1、SOP32 外形图与封装尺寸

尺寸 标注	最 小(mm)	最 大(mm)	尺寸 标注	最小(mm)	最 大(mm)	
A	20. 88 21. 08		C4	0.99TYP		
A1	0.3	0. 5	D1	0.55	0.95	
A2	1. 2	7TYP	D2	1. 45		
A3	0.7	7TYP	R1			
В	10. 2	10.6	R2			
B1	7.42	7.62	θ 1	8°	ΓΥΡ	
B2	8. 9	TYP	θ 2	15°TYP		
C1	2.14	2.34	θ 3	4°TYP		
C2	0.2	0.32	θ 4	14°TYP		
C3	0.10	0. 25				

